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Lyapunov spectrum of granular gases
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We calculate and study the Lyapunov spectrum of a granular gas maintained in a steady state by an
isokinetic thermostat. Considering restitution coefficients greater than unity allows us to show that the spectra
change smoothly and continuously at equilibrium. The shearing instability of the granular gas, however,
provokes an abrupt change in the structure of the spectrum. The relationship between various physically
relevant quantities and the energy dissipation rate differs from previously studied nonequilibrium steady states.
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I. INTRODUCTION Lyapunov exponents and their derivatives are continuous at
equilibrium, and the sum of the exponents and the dimension
The Lyapunov spectra of several nonequilibrium systemf the attractor are extensive quantities. Unlike NEMD sys-

have recently been studied and calculdteds]. These non- tems, however, the sum of granular gas spectra is not linear
equilibrium steady states are generated by traditional norin the energy dissipation rate, but quadratic. The sums of
equilibrium molecular dynamicéNEMD) simulations, and Certain pairs of exponents, however, are proportional to the
are constructed by forcing a system while adding a thermodissipation rate. Whenis lowered below a certain threshold,
stat to remove the dissipated energy. The most common ehe granular gas becomes unstable. This instability has a dra-
ample is a shear imposed onto a fluid, with a Gaussian omatic effect on the Lyapunov spectrum.
NoseHoover thermostdi9] added to remove the energy dis-
sipated by the viscosity. In these systems, the sum of all the A. Lyapunov spectrum
Lyapunov exponents is proportional to the energy dissipation : - —
rate and can thus be linked to the transport coefficients. F“rﬂc The Lyapunov exponents describe how quickly two iden

th h tra of £ th ; ften h al systems with almost identical initial conditions diverge
ermore, the spectra of many ol these Systems orten have;a phase space. Consider a system at the d&i@) in phase
special symmetry that simplifies the calculation of their sum,

. ) . fL dimensions. Th m follow. me traj r
An alternative method of calculating transport coefﬂmentsSpace ofl. dimensions e system follows some trajectory

through phase space, arriving Bft) at timet. We express
fro'f” Lyapunov spectra has been propo$d,11. For a this mathematically by defining; to be an operator that
review, see Ref(12].

In this paper, we study the Lyapunov spectrum of granu-e volves a point in phase space forward a time

lar gases. Granular gasgk3—17] are a generalization of an I'(t)=SI(0). (1
early model of fluids, the hard-sphere fluid8]. The
Lyapunov spectrum of the hard-sphere fluid has already beeRext, consider a second system atlat 5T', where oI is
studied[6,19,20, giving us a well defined point of compari- infinitesimally small. After a time, this system moves to
son. The hard-sphere fluid is a set of sphéceglisks in two
dimensiongthat move freely through space, interacting only I'(t)+oT'(t)=S[I'(0)+ 6I'(0)]. (2
during instantaneous, energy-conserving collisions. In granu-
lar gases, we allow collisions to dissipate or generate energy.hen the Lyapunov exponeitis defined to be
The change of energy depends on a single paramgtbe
restitution coefficient. Whem=1, collisions conserve en- A=
ergy, and we recover the hard-sphere fluid. The change in t
energy during collisions is compensated by a Gaussian ther-
mostat, as in the previously studied NEMD systems. Note that\ has units of inverse time. It is thus the grovit

The granular gas thus resembles the NEMD systems, bufecay rate of the perturbatiodT'. In general is a function
there are several important differences. The most fundamemf both I' and ST". This is unfortunate, because bdthand
tal is that the granular gas has irreversible microscopic dysI" containL numbers, so thax is a function on a 2 di-
namics. Another important difference is that the granular gasnensional space. However, the situation can be improved

does not have a thermodynamic limt. For any fixed value obecause théI" are infinitesimal. This means that their evo-
r#1, instabilities appear & is increased. Furthermore, for |ution depends only on the linearized dynamics,

the granular gas, equilibrium can be approached continu-

1 fer()
im Tln EXOIE

()

— 0

ously from two directionst —1_ andr—1, . In the NEMD I'(t)+or(t)=5I'(0)+ M- T, (4)
systems, equilibrium can be approached from only one direc-
tion, by letting the forcing tend to 0. where M is simply anL XL matrix. Since M is a linear

We will compare the Lyapunov spectra of granular gase®perator, knowing\ (I, 8I") for a set of ST" that spans the
with those of NEMD systems. For both these systems, th@hase space enables one to calculE, 6T") for any 6T
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By convention, we associate, with the fastest growing di- If r=1, energy is conserved during collisions, and we have
rection 8I';; N, with the fastest growing directiodl’, that  the traditional hard-sphere fluid. One usually considers only
is also perpendicular téI'; (8I';- 6T',=0), and\; with the  r<1, because collisions always dissipate energy in experi-
fastest growing directiodlI’; with 6I';- 61';=0 for j <i. mental granular flows. We will also consider the casel
Furthermore, for ergodic systems, the Lyapunov spectrunfcollisions generate energywhich is unphysical, but pro-
{\i} is independent of". This enables us to do away with vides access to two different equilibrium limits—~1. and
the dependence oh, and speak abouhe Lyapunov spec- r—1_.
trum of a system. A dynamical system is ergodic if its in-
variant distribution cannot be subdivided into smaller invari-
ant pieces. This is a more general condition than equilibrium:
systems out of equilibrium can also be ergodic. In this paper, In this paper, we consider exclusively the two-
we will assume that all the systems considered here are eflimensional freely cooling granular gas. To perform this
godic, although this has not been proved. However, we havéimple computer experimendy identical disks of radius

not seen anything that would contradict this assumption. ~are placed in a periodic domain of siz¢ by L, . The initial
conditions are drawn from the microcanonical ensemble: the

total energy is fixed, the disks are uniformly distributed in
_ space and given velocities drawn from the Maxwell-
By a granular material, we mean substances such as sanglgitzmann distribution. The system then evolves without
powders, grain, or gravel that are composed of many indigny input of energy. This experiment was invented by Haff
vidual macroscopic particles. We consider an idealization 0[13], and is now the subject of many pap¢tg—17.
these materials called the inelastic hard sphere model. This At r=1. we recover the hard-sphere fluid in equilibrium:
model is a generalization of the hard-sphere fluid, an earlyhe density remains homogeneous and the velocities obey the
model of liquids[18]. In the hard-sphere fluid, particles are paxwell-Boltzmann distribution. As decreases, nothing
assumed to move freely, without interaction, except duringyramatic seems to happen: the density remains constant, and
instantaneous collisions, when the particle velocities changgg large scale motion is visibléalthough there are subtle
discontinuously. Forces between the particles are never Caffifferences with the equilibrium stateThis situation is
culated; instead the post collisional velocities are calculatedg|ied the “homogeneous cooling state” because the granu-
directly from the precollisional velocities and positions using|gy temperaturdthe average kinetic energy per particte-
a “collision rule.” The collision rule is derived by assuming mains spatially uniform but decreases monotonically with
that a collision conserves momentum and energy, and thgfme. Asr decreases, the temperature decreases more and
the force between the particles acts only along a line conmore rapidly. Finallyy reaches some critical value, where a
necting the centers of the particles. When modeling granulagansition to a shearing state appears: the particles spontane-
materials, we wish to remove energy conservation, becausgysly form two countermoving streams. This instability oc-
collisions between macroscopic particles do not conserve thgyrs when the randomized kinetic energy of the granular
macroscopic kinetic energy. Thus, we replace the conserv@emperature decays more rapidly than the longest shear
tion Of energy by the deﬁnition Of the reStitUtion CoeffiCient modesl Th|s process has been Studied in deta" using a hy_
r. If n is a unit vector pointing along the line of centers, anddrodynamic approachl?], and it has a dramatic effect on
the primed (unprimed velocities are the post-collisional the Lyapunov spectrum. As decreases further, the dense

C. The freely cooling granular gas

B. Granular materials

(precollisiona) velocities, then clusters form. Wherr>1, the density remains constant.
N .. Whenr becomes much larger than 1, all the kinetic energy
(vpa—vg)-N=—r(va—vg)-N, (5  becomes concentrated in a few particles.

But there is a problem: the freely cooling granular me-
where the subscriptd and B denote the colliding particles. dium is not in a steady state. The total energy is monotoni-
Throughout this paper we use boldface letters to indicat@a"y decreasianr increasing forr>]_)_ However, a |ong
vectors in phase space, and mark physical space vectors Wifiine average over a steady state is needed to calculate the

an arrow or a hat. Equatiai®) says that the relative velocity | yapunov exponents. A steady state can be created by mul-
along the line of centers is reversed and reduced by a fact@jplying the velocities of all the particles by

of r. The four assumptions can be combined to give the

collision rule, Eq g
~ VE,+AE ®

I;AZJA‘*’F, J’B:JB_F'

(6) just after each collision. Herds is the (constant total ki-
netic energy andAE, given in Eq.(7), is the change in
energy during a collision. The advantage of this method is
that multiplying all the velocities by a constant does not

N P
WherefET[(vB—vA)ﬂ]n.

The change in energy during a collision is change the sequence of collisions, it only makes them occur
1 sooner(or late). This means that it is not necessary to mul-
1\ TN A2 tiply all the velocities at each collision. One simply replaces
AE 4(1 (g =va)-nl" @) the usual time variablewith a new time variables,
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EO(t) these systems to those of granular gases, emphasizing two
szf vdt, y= E (9) points: (1) the relation between sums of the exponents and
0 the energy dissipation rate, af2) the validity of the conju-

Here,E®(t) is the total kinetic energy, measured in terms of9ate pairing rule.

the original, unadjusted timeandE, is the kinetic energy at 1 he proportionality of the sum of the exponents to the
t=0. Changing the time variable fromto s necessitates €Nergy dissipation rate has been used to express the transport

transforming the velocities because they are simply derivaCOefficients in terms of Lyapunov spectra. For example, in

tives of position with respect to time, uniform shear, the energy dissipati(_)n rat_ey'r;z2 wherey is
the shear rate angl is the dynamic viscosity. One can there-
v =007y, (10)  fore write 7~ (S\)/52.

The validity of the conjugate pairing rule greatly simpli-
Note that a particle in free motion){" constant will seem  fies the calculation oE\ [2,5]. This rule states that conju-
to accelerate or deacceleratejashanges with time. In terms  gate pairs of exponents sum to(a). The smallest and the
of the transformed VEIOCitieS, the total kinetic energy is COfHargest exponent form one Conjugate pair, the second small-

stant E®=EW/?=E,, est and the second largest another pair, etc. In our two-
dimensional system withM degrees of freedom, the conju-
D. The Lyapunov spectra of NEMD systems gate pairing rule states,

The thermostat used to keep the granular gas in a steady
state is a discrete time version of the Gaussian or isokinetic
thermostat, where the total energy is maintained constant bg

r

)\i+)\4N*i+1:_<a>! for 1<i<4N. (12)

the conjugate pairing rule holds\ can be calculated
om any pair of exponents. In Sec. Il B, we show that cer-
ain conjugate pairs of granular gases obey #@), but the
majority do not.

. r 0 E. Computational details
r={.|=FI)—« . (11

applying a small drag to all the particles. This thermostat ha:
often been used in NEMD studies. For continuous time, ap;
plying this thermostat gives equations of motion with the
form,

. 1. Units

All results in this paper are numerical, and given in non-
Setting =0 gives the unthermostatted system. For thedimensional units. We use the particle radiuas the unit of
Gaussian thermosta, is adjusted at every time step to keep distance, and the particle massdefines the unit of mass.
the energy constant. This thermostat samples the microcahe unit of time is defined by fixingv?=N, wherev; is the
nonical (isokinetig ensemble. The Nosdoover thermostat velocity of particlei. (Thus the total energy Bo=N/2.) All
gives equations of motion written in the same form, excephumerical data shown in the figures is given in terms of these
that « obeysa=[(Eo/E)—1]/7* (where 7 is the response units. For example, the notation, =45 in various figure
time of the thermostat The NoseHoover thermostat allows captions means that the simulational domain has a height of
the energ)E to fluctuate about its medf,, and samples the 45 particle radii.
canonical, or isothermal ensemble. The Nekmver ther-
mostat reduces to the Gaussian thermostat in the limit 2. Algorithm

—0. For both thermostat¢) is proportional to the energy  gjnce the inelastic hard sphere model is a generalization
dissipation rate. . of the hard-sphere fluid, we modify Dellago and Posch’s
The Gaussian thermostat, the Ndseover thermostat, agorithm [6] for calculating the Lyapunov spectrum of a
and the “granular Gaussian” thermostat presented in thearq_sphere fluid. In the Appendix, we discuss certain subtle-

previous section are all very similar. They all maintain ajjeg that arise because we calculate the Lyapunov spectrum
constant energy by rescaling the velocities. The NOSe€j, terms ofs and nott.

Hoover thermostat can also be understood as a time rescaling
[9], just like the granular Gaussian thermostat in Sec. | C.
However, the time-rescaling formulation of the Neseover

thermostat is difficult to implement, so the velocity-rescaling e will first discuss the structure of the Lyapunov spec-
formulation is used more frequently. The velocity-rescalingyrym atr =1 (equilibrium), and then show how this structure
formulation is also easier to understand. For granular gasegnanges withr. Much of what we present in Sec. Il A has
the situation is different. As discussed in the previous secyready been discussed in RéR0], but this material is

tion, the time-rescaling formulation is computationally more needed for the interpretation of the nonequilibrium spectra in
efficient; therefore the time-rescaling formulation is used ingec. || B.

the simulations presented in this paper. However, we will
discuss the results from the velocity-rescaling perspective,
because this makes them easier to understand.

The Lyapunov spectra of several thermostatted systems At r=1, conjugate pairs of exponents sum to B;
have been calculatdd—8]. We will compare the spectra of +A4n_i+1=0. Thus, each exponent has a partner that is

Il. STRUCTURE OF THE SPECTRUM

A. Equilibrium spectra
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FIG. 1. The spectrum of &=360 hard-disk fluid {=1) in a FIG. 2. The same as Fig. 1, but foNs= 120 hard-disk fluid in

square domainuxz Ly: 45) (a) The first 2N Lyapunov exponents a reCtang.Ulalj domainft 1, L,=15, Ly:45) The density is the
(the second R are just the negative of the exponents shpwib) same as in Fig. 1, bll_lX is reduced by one third. The stars mark the
The smallest positive exponeritsote difference in thet axis). For ~ exponents featured in Fig. 3.

an explanation of the units used in this figure, see Sec. | E 1. . o .
give their displacements in momentum space. We denote the

exactly its negative, and it is necessary to calculate only halfisplacement in physical space of partiglas or; ¥ and its
the spectrum. The second half contains no additional inforvelocity space displacement as;("). It is helpful to visual-
mation, and is simply the negative of the first. ize the Lyapunov vectorsI; by projecting thesr; or v

In Fig. 1, we show half of a typical spectrum of the hard-onto the positions of the corresponding particles. This is
sphere fluid at equilibrium. The parameters of the system argione in Fig. 3, where we show five typical vectors, one from
N=360, L,=L,=45. The spectrum can be divided into two the continuous part of the spectrum, and the rest from the
parts. Fori<681, the exponents fall onto a well defined discrete part.
continuous curve. On the other hand, for 882720, the The continuous part of the spectriynepresented byI';
exponents appear in small groups at discrete values. in Fig. 3(@)] corresponds to disorganized and local perturba-

The discrete groups of exponents have been discussed ligns. Many particles have very small contributionsdb, .
Posch and HirscH20]. They correspond to hydrodynamic- As the Lyapunov index increases, the modes become less
like perturbations, and appear in groups of four and eight inocal: more and more particles have significant amplitudes,
Fig. 1 because there are fourfold or eightfold degeneracieut the modes remain disorganized. These modes are also
associated with the square domain. If we break the symmetryery time dependent. If the simulation were to run a bit
of the simulational domain by settirig.#L,, the groups of longer or a bit shorter, the set of contributing particles would
exponents separate into two parts. When eitheor L, is  change, and Fig. (& would look completely different. On
small, several groups of exponents disappear, and the dighe other hand, if the calculations were started with a differ-
crete part of the spectrum is simplified. Therefore, it is usefulent initial 5I"; (but the same initial particle velocities and
to consider a narrowl(,=L/3) system with the same den- positions, i.e. the same initidl) and run for the same length
sity. This system is shown in Fig. 2. of time, Fig. 3a) would not change at all.

We now want to investigate the physical processes under- In the discrete part of the spectrum, the exponents corre-
lying the exponents. As discussed in Sec. | A, each exponenjpond to collective motions of the particles. This explains
\i gives the growth rate of a perturbation in phase spacevhy these exponents appear in small separated groups at
oI';. Each oIy has AN components: R give the displace- discrete values. For exampbe;se= \ .37 because both expo-
ments of each particle in physical space, and the otier 2 nents correspond to transverse, sinusoidal shearing perturba-
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FIG. 3. Lyapunov vectorsl';, 6l'p33, 61537, anddl',390f @ hard-disk fluid witiN=120,r=1, L,=15, andL,=45. The circles show
the positions of the particles at the end of the simulation. In panels a, b, d, and e, the arrov&}éﬁoﬁne components ofI'; that describe
the displacement in physical space of partjci@he displacements in velocity spaﬁé,—“) are nearly equivalentThe lengths of the vectors
are scaled by the maximum length. If the length of a vector is less than 0.16, no vector is shown. In panel c, we shade the particles with
5I’j "V >0.

tions[ 8,3, is shown in Fig. &), and 6T ,54is the same, but  their connectiortif any) to the actual shear and sound waves
with a phase shift ofr/2]. Higher harmonics of the shear Of the hard-sphere fluid is an open question.

waves also exist. The pair of exponents; and\ »3q corre-

sponds to transverse shear waves with a wavelengthy/af B. Nonequilibrium Lyapunov spectra

Note also thah ;35= A 31~ 2\ »37. AsL is increased further, ke th | . 4 Fi
it is possible to see the third harmonic, then the fourth, and We now take the rectangular system of Fig. 2 an F|g_. s
SO On. and varyr. The results are shown in Fig. 4. We emphasize

that the exponents change smoothly and continuously at
1, the thin vertical ling If we follow a

0.8

-0.8
0.7

The exponents. ,3, through\ 535 corresponds to longitu- S
dinal waves, where compressive motion is coupled to a heafduilibrium (r=
ing or cooling of the gas(In Fig. 3, we show position per-
turbations ér; not velocity perturbationsév;, but for
nonzero vectors, these two quantities are closely correjated. 0.6
These waves resemble sound waves, but they do not have the 0.4
same relation between velocity and position displacements. o2 ’
In true sound waves, the velocity and position displacements
are out of phase, but in the longitudinal Lyapunov waves, the
two displacements have the same phase. Furthermore, these 0.2
waves do not propagate at the sound speed, but they do have
higher harmonics just as the shear waves.

In general, the Lyapunov exponents in the discrete part of -0.6
the spectrum obey

0.8

-0.4 l

n
>\~L—+0(1/L§), n=0,1, ..., (13
y FIG. 4. The Lyapunov spectra of the freely cooling granular gas

. with N=120, L,=15, L,=45, and 0.%r<1.3. Equilibrium §
wheren is the mode numbeThe zero modes can be con- =1) is marked with a thin solid line, and the transition to the

sidered then=0 members of this serigsThe existence of  oa1ing state at~0.965 is marked with the dashed line. The spec-
Iongltudmal and transverse modes and the dependence_g[,m shown in Fig. 2 appears as a single column=at ; for each
their exponents on their wavelengths has already been digxponent, a dot is placed on the graph. Since all the exponents of
cussed20]. Equation(13) also appears in a mathematical Fig. 2 have the same value ofthey fall in a vertical column. The
model of the Lyapunov exponenfl]. In another paper specira for the other values oare displayed in the same way. This
[22], we study these hydrodynamic modes in more detail. Irmethod of graphing allows the eye to easily follow the evolution of
the following, we refer to the transverse modes as “sound”\ with r. These spectra were computed by averaging over 2000
modes and the longitudinal modes as “sound” modes, butollisions per particle.
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FIG. 5. A subset of the data of Fig. 4, with the different discrete 0.2 .
exponents labeled. “2nd shear” is the second harmonic of the shear ! ey ¥ ¥*T
mode, “1st sound” is the first harmonic of the sound mode, } **++f+++
[Fig. 3(b,0], and “1st shear” is the first harmonic of the shear ! *iiiJr*
mode[Fig. 3(d)]. These three families have both a positive and a z 0.0 % % .
negative branch. “0 modes” are the three modes that remain zero F/ 8 @9? $:** =¥
for all values ofr (see text The “momentum modes” are modes o x ii ! (‘)
where the momentum of each particle is increased by constant. The é ;;Lt ! — PN
“energy mode” is where the energy of each particle is augmented cf 02| ! O 1st sound
by a constant. < | Ay
| X Aggthg
. . . L. . b) | o Ao,
single exponent as a function pf nothing distinguishes the | =
1

equilibrium state. On the other hand, the shearing instability 090 005 100 105 110 115

(vertical dashed lineprovokes abrupt changes in all the ex- r

ponents. On the level of the microscopic dynamics, the

shearing transition is more significant than equilibrium. FIG. 6. Conjugate pairs of selected exponents, compared to the
To discuss the variation of the discrete part of the specenergy dissipation rate per particRyss/N. The exponents labeled

trum with r, we present a subset of the data in Fig. 5, idendn Fig. 5 are given the same names here. Four additional pairs

tifying the different families of exponents on the graph. Con-Of exponents (1,480), (5,476), (50,431), and (200,283) are shown

sulting this figure, we can see how the exponent associatel (0).

with each type of hydrodynamic disturbance changes with

The two series of points labeled “2nd shear” are the secondponds to a phase space displacement that augments the en-

harmonic of the shear mode. For 0.965, both the negative ergy of each particle. This perturbation grows at twice the

and positive branches decreaser ascreases. The first har- rate of the momentum modes.

monic of the shear mode “1st shear” has the same behavior. Another way to examine the dependence of the Lyapunov

At the shearing instabilityr(= 0.965), the negative branch of spectrum orr is to calculate conjugate pairs. In Fig. 6, we

the first shearing mode bifurcates. The degeneracy betweeahow the sums of several pairs, as well as the energy dissi-

the two shear modes is broken by the presence of shear in tipation rate per particle. If the granular gas behaved as a

system. One of the modes corresponds to a shear perturbi@ermostatted NEMD system, all the conjugate pairs would

tion that is in phase with the shear in the velocities, the othefall on the heavy line. It is interesting to note that the mo-

is out of phase. The sound waves “1st sound” have a dif-mentum and shearing modes do indeed behave in this way.

ferent behavior: the positive branch increases witlvhile ~ Other pairs, however, do not. For example, the conjugate

the negative branch decreases. pair (1,480) has a slope of the opposite sign, and other pairs
The series of points labeled “0 modes” are the threeare nearly independent of
modes that remain zero for all values of Two of these Another fact that emerges from Fig. 6 is that the conju-

modes correspond to a uniform displacement of all the pargate sum of the shearing modes is independent of their wave-
ticles in physical spacgas shown in Fig. @]. The third length. This is also true of the sound modes; if their second
corresponds to the vector that points along the trajectory itharmonic were present, its conjugate sums would fall on top
phase space: the physical space displacemerE ire par- of the points labeled “1st sound” in Fig.(B).
allel to the velocities il In Fig. 7, we show the Lyapunov spectrum of the square
The momentum modes are modes where all the particlesystem with the same parameters as Fig.NE=@B60, L,
are displaced uniformly in velocity space. These modes are-L,=45). Forr>0.965, the evolution of the spectra are
zero at equilibrium, but become nonzero due to the effecsimilar to the narrow rectangular case. The shearing and
described in Eq(10): if the center of mass has a small initial sound modes have the same dependence blear the sec-
velocity, the thermostat will amplify or diminish this move- ond harmonic of the shearing mode, many new modes ap-
ment as it adds or removes energy. The energy mode corr@ear that were not present in the narrow rectangular system.
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FIG. 7. Same as Fig. 4, except for a square system with three FIG. 8. The sum of the whole spectrum, divided Ny The

times as many particledN=360, L,=L,=45). heavy solid line is the narrowN=120) system and the heavy
dashed line is the squar®&l & 360) system. The vertical solid line

One can easily see if they are shearing or compressive byidicates equilibrium (=1) and the vertical dashed line the onset
examining their dependence onOn the other hand, when of the shearing instability.
r<0.965, there is a difference between the square and rect- , ,
angular cases. In the rectangular case, the hydrodynamic '€ behavior o differs from the NEMD systems, be-
modes maintain their identity for<0.965. In the square CAUSEZA is quadratic in the energy dissipation rdgs.
case, the hydrodynamic modes become smeared together foidure 6 showsPss, and it is linear inr. In Fig. 8,2\ is
r<0.965. This probably occurs because shearing motion digduadratic inr and therefore also iRyiss.
rupts any hydrodynamic mode whose wave vector is not par- 1€ Kolmogorov-Sinai entropyhgs gives the rate at
allel to the velocity gradient. In the rectangular case, all wavévhich a forecast made from finite precision data loses accu-
vectors must point in thg direction, along the velocity gra- "acy- For closed systems, like the one considered in this pa-

dient. In the square case, they can point inxtar y direc-  Per, it is equal to the sum of all the positive Lyapunov ex-
tion. or a combination of the two. ponents. In Ref[6], this quantity has been calculated as a

function of density and shown to be closely related to the
collision frequency. In Fig. 9, we show the Kolmogorov-
Sinai entropy per particle as a functionrodnd as a function

In addition to the structure of the spectrum, there are ceref collision frequency. As a function of hyg is continuous
tain sums of the exponents that have physical significancet equilibrium, and seems to have a maximum at a value of
We will present these sums as functionsroffor both the  slightly larger than 1. The biggest change in behavior occurs
narrow and square systems shown above. In all cases, it willt the shearing instability, whereyg falls rapidly. Figure
be seen that the sums vary continuouslyr atl, and the 9(b) reveals thatgg is roughly proportional to the collision
most abrupt change in behavior always occurs at the onset odte dC/ds, so that the rapid fall ohyg at the onset of the
the shearing instability, not at equilibrium. shearing instability is due to the reduction of the collision

First of all, the sum of all the exponents give the rate ofrate.
phase space contraction. In Fig. 8, we show the dependence Finally, the spectrum can be used to calculate the dimen-
of the sum of the whole spectrum onAs expected, the sum sion of the attractor using the Kaplan-Yorke conjecture
is 0 atr =1 and negative elsewhere. The sum approaches ifd,4,23. One starts adding the exponents together, starting
maximum smoothly and continuouslfglthough the second with the A;. The sum increases until one reaches the 0 ex-
derivative may change abruptly at1). ponents. Then one starts adding the negative exponents, and

The vanishing derivative o\ with respect tor at the sum decreases. When the sum vanishes, one stops, and
r=1 implies that there are relations between the differentounts the number of exponents in the sum. ThiB|is the
conjugate pairs of exponents. The sum of all the pairs mustLyapunov” dimension of the attractor. Usually only a frac-
be>\, so if certain pairs of exponents have a nonzero slop&ion of the last exponent is needed to make the sum vanish,
atr=1, as the shear modes do, there must exist other paii® that the number of exponents in the sum is not necessarily
whose slope has the opposite sign. In Fig. 6, we see that than integer. This method has been shown to be exact up to six
pair (1,480) has a slope approximately one-half as large andimensions, and to give an upper bound in higher dimen-
of opposite to the shear modes. Thus, it cancels about orsons. For equilibrium systems, this procedure givis the
half of the shear modes. Since there are six shear modemension of the phase space. Like in Fig. 8,D, has a
present, plus the energy modehich has a slope twice as quadratic dependence offior r >0.965, and thus a quadratic
large as the shear modeshere must be at least 16 pairs dependence oRyss. This is different from the NEMD sys-
whose slopes are similar to (1,480). In fact, there are morgems, wherd, has a linear dependence Bg[4]. But like
because the pairs at the lower edge of the continuous part tfie NEMD systemspD, is an extensive quantity, i.e., it is
the spectrunfjrepresented by (200,283) in Fig] Bave very  proportional toN. This can be seen from the nearly perfect
small slopes that have the same sign as the shear modes. superposition of the two lines in Fig. 10.

lll. GLOBAL SUMS OF THE EXPONENTS
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‘_‘\ the repelle{7,24]. The attractor is the object whose dimen-
sion is shown in Fig. 10, and is the set of stable trajectories.
A trajectory starting from almost any point in phase space
rapidly approaches, or is “attracted” to, the attractor. The
repellor is the set of unstable trajectories. These unstable
trajectories cannot be observed directly in simulations, be-
cause any small deviation from the repellor grows exponen-
tially. In this way, a system placed at almost any point in
phase space is attracted by the attractor and repelled by the

repellor.
In reversible systems, the repellor trajectories can be con-
10 11 12 13 structed by taking a simulated trajectory, and following it
r backwards in time. We can express this in mathematical

symbols. Letl’y be the starting point of the simulatédlt-

20 tractop trajectory andl’; its end. Then we have
F]_:Stro, V,FO:S»[V,F]_, (14)
15 ¢
= whereV_ is an operator that reverses all the velocities. The
:Q 10 | first equation expresses the attractor trajectdiy—¢1';) and
the second the repellor trajectory (I'y—V_I'g). The op-
eratorS; is the same in both cases because the microscopic
0.5 dynamics is reversible. Since E{.4) applies for any time,
b) the repellor is just mirror image of the attractor. We can
0.0 ‘ - - obtain it simply by applying/_ to the attractof7].
0.0 0.5 1.0 1.5 2.0

But this is not true for granular gases, because the micro-
dGfds scopic dynamics is not reversible. But there is still a way to
FIG. 9. The Kolomogorov-Sinai entropy divided by The solid ~ 9enerate the repellor trajectories. Note that the collision rule,
line is the narrow K=120) system and the dashed line is the EQ. (6), can be rewritten as
square N=360) system(a) as a function of, (b) as a function of

collision ratedC/ds. > -, > > N o
va=vatf’, vg=vg—1',

For r<0.965, D, decreases approximately linearly with (15
r. It may be tempting to compare this with a NEMD system, P B e T U
but P s is not linear inr for r<0.965, sdD, is not linear in f'=—F—[(vg=va)-nn.
Piss-

This equation has the form of the collision rule, except the
restitution coefficient is now t/and the pre- and post-

The phase space dynamics of nonequilibrium steadgollisional velocities have exchanged roles. A collision at
states are governed by two fractal objects: the attractor anastitution coefficient is the inverse of a collision at 1/
Therefore, Eq(14) must be modified to

IV. CONSTRUCTION OF UNSTABLE TRAJECTORIES

4.0
3.9 =8y, V.Te=8M"V.Ty, (16)
3.8
where the superscript off; indicates the restitution coeffi-
z 3.7 cient. We have used this procedure to generate repellor tra-
O 36 jectories, and computed their Lyapunov spectrum. We find a
spectrum that is exactly the negative of the first. This is what
3.5 is expected, because if we consider a trajectory infinitely
34 close to the first trajectonf’y+ 6I'g— 1"y + oI'; that gener-

ates a Lyapunov exponert, we know that its image:
3.3 : : : : V_(I'1+6I')—V_T'y+ 6l exists, and will generate the
07 08 09 10 11 12 13 Lyapunov exponent-\.
r We emphasize that for granular gases, the repellor cannot
FIG. 10. The Lyapunov dimension of the attracByr, divided b€ obtained by simply applyiny_ to the attractor. The re-
by N. The solid line is the narrow=120) system and the dashed pellor is not the mirror image of the attractor, but the mirror
line is the squareN=360) system. image of the attractor with— 1/r.
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V. CONCLUSIONS except at timeg7,,7,, ...}, when the system moves in-

We have calculated the Lyapunov spectrum of granularStantanEOUSIy from one phase space point to another,

gases and explored some of its properties. In general, we find I’ =M(T). (A2)

that equilibrium is distinguished only by the symmetry of the

spectrum. There are no discontinuities in the spectrum aflong with I'(t) one evolves a set of M infinitesimal

equilibrium. On the other hand, the onset of the shearing yapunov vectorgsT'} such thafl(t) + I'(t) is a trajectory

instability causes big changes in the spectrum. The onset @ phase space distinct from, but infinitely closdt(). The

the shearing instability is associated with a rapid decrease ipyapunov spectrum is calculated from the growth rate of

sum of the spectrum, the Kolmogorov-Sinai entropy, and thehese vectors. This set ofNdvectors must be periodically

dimension of the attractor. Furthermore, the shearing instarenormalized, as described [iB5].

bility disrupts the hydrodynamic structure of spectrum. During the continuous part of the motion, the Lyapunov
We compared the granular gas to the NEMD thermostatyectorssI” evolve according to

ted systems whose Lyapunov spectra have been studied for

several years. There are important differences between the . JF

relation of the energy dissipation rate and the sum of the or'= ﬁﬁl“, (A3)

Lyapunov exponent&\. In granular gases, the sum of the

Lyapunov exponents is quadratic in the energy dissipatiomnd when the system jumps from one point to another, Del-

rate, not linear as in the NEMD systems. This may be due téago and Posch showed that the Lyapunov vectors transform

the existence of two different equilibrium limits:=1, and  according to

r—1_. Equilibrium (r=1) must be a maximum oEA

since A <0 for nonequilibrium systems. This means that ,_M M B

the derivative ofS\ with respect tor must either vanish at o= ZF o+ | op - FIN=F(MD) | o7 (A4)

r=1 or be discontinuous. But this second possibility is ex-

cluded because all the exponents are continuous in The second term on the right hand side arises because the

We also showed how to construct the repellor. One cannonapM is not applied at the same time in the two trajectories.
construct it by simply reversing the velocities of the attractorThe particles are at slightly different positions so their colli-
trajectories, for the microscopic dynamics is irreversible. In-sions will occur at slightly different times. The quantify
stead, one must reverse the velocities after changing the res-the difference in collision times.

titution coefficient to its reciprocal. It now becomes more convenient to use the notation
In conclusion, there are many points of contact between .

granular gases and the previously studied nonequilibrium s

systems. Yet, granular gases are not so similar as to be r St P

equivalent to modifying a few parameters of an existing r;( ) 5r:< ) r=| 2 , (A5)

case. It is therefore fruitful to compare granular gases with v ov

these other systems, as we have done in this paper. We hope >
this work will deepen the scientific community’s understand-

ing of chaos in nonequilibrium systems and suggest NeWyherer andw are the position and velocity coordinatéRe-

directions of inquiry. call that boldface vectors are phase space vectors while
physical space vectors are indicated by an arr®etween
ACKNOWLEDGMENTS collisions, we have free motion, so
We thank Stefano Ruffo, Pierre Gaspard, and Charles .
Dellago for several helpful discussions. We also thank F:( r) _(v> (AB)
Harald Posch for providing us with RdR0] before its pub- v 0
lication. We thank the Centre National de la Recherche Sci-
entifique for funding a part of this work. The Lyapunov vectors obey
APPENDIX: AN ALGORITHM FOR CALCULATING U or _ ov
THE LYAPUNOV SPECTRUM OF A GRANULAR GAS or'= Sv o/ (A7)

In this Appendix, we give the modifications that must be . S
made to Dellago and Posch(§] algorithm for calculating T ©F hard spheres, the map applied at each collision is
the Lyapunov spectrum of the hard-sphere fluid. We first

present their results, and then our generalization. T’ :( r :( ra (A8)
One first calculates a trajectoy(t) of the system in v’ v+fc/’
phase space. The hard-sphere fluid has two types of motion.
Between collisions, the system evolves continuously, We have used slightly different notation than Dellago and
Posch. The momentum transferred from one particle to an-

= F(I), (A1) other during the collision if:
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F:[(JB_EA)'ﬁ]ﬁi (A9) where 56;(ae/aF)~6F. Equa_tion (A13) can be imple-
mented directly, but the resulting program is very slow be-
which is the same as E¢6) with r=1. As before AandB  cause all components of the displacement vectors must be
label the two colliding particles, and is a normal vector Medified at each collision. Furthermore, E411) cannot be
pointing from the center dB to the center oA\ Cis a vector USed becausév changes at each collision. We therefore
that has 1 in the position of particks — 1 in the position of seek an alter_natlve that allpws us to advance the coor'dl'nates
associated with freely moving particles over many collisions
L L LT IR i at a time. We first search for a generalization of El1)
=vatf, vg=vg—f, andvj=v; for i#A,B. that gives the evolution of the noncolliding components of
Equation(A4) becomes the Lyapunov vectors. Suppose that a particle undergoes free
P motion betweenr; and 7,, i.e., it is not involved in any
{2

iy , (A10)  collisioni with j>i>n. Let sr] andsv| be the phase space
1%

deviations just after collision, and &r, and dv,, are the
N ~ deviations just before the collisiam The effect of repeated
where 6f = (4f/4I) - 6I'. This transformation involves only applications of Eq(A13) for collisionsi with j>i>n give
the components obI" corresponding to the two colliding
particles. This enables us to integrate E@s?) and (A10) SF S +B" 55-’+(Cf"1+D” Yo
rapidly. The algorithm proceeds as follows: for each particle, ( *n) :( A
we store the time of its last collisiofor 7o, the time of the v, EN 1ov] +A] ¥
beginning of the simulation, if that particle has suffered no (Al4)
collisions. Suppose we are just about to treat collision
involving particlesA andB. Before applying Eq(A10), we  Here,v* is the particle velocity with as the time variable. It
must take into account the free motion leading up to collisionis constant between collisions. But the real content of Eq.
n. Let j, denote the index oA's last collision (wherej,  (A14) lies in the following definitions:
=0 if this is A’s first collision). For each Lyapunov vector
sI' we modify the components associated with partiéle n
using Ean_Hm €

=

5Fn=5rj-£\+ 55,-;\(TJ-A— ). (A11)

particle B and 0 elsewhere. Thus'=v+fC meansv,

sr—for.C
Sv+ ofC

n

X A= E" S lv,
Here, or , is the phase space deviation just before collision m izEm i+1967%

while 5FJ’A is the deviation just after collisiop,. Equation

n
(Al11) gives the change in these components of the Lyapunov N i1
vectors that has occurred during the free motion since colli- Bm—;m Em vi-a(ri—7i-1), (A15)
sionj 5. After doing the same thing for particl, we apply
Eq. (A10). Finally, we setja=jg=n and go to collision n
n+1. CN=> (1—¢€)d7eilyi,
We now turn to the thermostatted+ 1) case. The algo- N ool TV

rithm must be modified, but it remains essentially the same.

As we will see, instead of storing the time of each particle’s noo

last collision, we must storeN8+ 3 quantities per particle. D”m=._2 Alrr:l’}’i—l(Ti_Ti—l)-
These additional quantities, however, play the same role as t=m

7 in Eq. (A1l).
Ia .. o . ..
When the thermostat is applied, the map applied at colli" t'hi S;gef;r;lt;ogfs;}c;f égﬁ_;’_ﬁlﬁ_e C;fy -Jquttrt])st:;(Ia gogg'on
sions becomes I, € | value ote Isiont, o7g; | valu Te
r-’
v’

for collision i, etc. If m>n, we takeE/ =1 and the sums
equal to 0. We call these quantities “propagators” because
where e, given in Eq.(8) is the factor needed to maintain
constant energy. The momentum transfer is now given b

, (A12)  the propagate the Lyapunov vectors forward in time through
the collisions given by the super- and sub-script: the notation
En, is meant to suggest that this quantity propagalégrom

Eq. (6), not Eq.(A9). Note thate multiplies all components

of v, not only those involved in the collision. E¢A4) be-

comes
or'
ov'|

r
e(v+ FC)

collision m to collision n. Not all the superscripts in Eq.
¥A14) are the same becauge C, and E are incremented
during the collision whileB and D are incremented during
the free motion leading up to the collision. ThAsC, andE
have a superscript ai—1 because collisiom has not yet
occurred. ButB and D have a superscript af because the
, (a13)  free motion leading up to collision has occurred. Note that
A andD;, depend ordT" (via Je).

Sr+[(1—e)v—efClo7,
€dv+eSfC+ Se(v+ fo)
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As one advances in time, it is easy to update these quaN+ 3 numbers per particle. This requires a lot of memory
tities. Suppose the collision has just occurred. Then the (8N? numbers, but recaflsT'} contains 161> numbers, but
free motion between collision andn+1 can be taken into adds very little computation time. Each particle “remem-

account using bers” the values of the propagators just after its last colli-
nil en o n sion. Imagine that we want to treat collisionusing Eg.
Bm "=Bmt En¥n(Tne1—Tn), (A14). We do not have necessary propagators. For example,
(A16)  we needA"”};, but we have onlyA’” and A} . But the
Dnm+1:Dnm+Anm7n(7n+l_Tn)- Jat !

needed propagators can all be calculated from the available
At collision n+1, we update the other three quantities, ones using

A21+l:En+lAnm+ 5Er|+ll AJn;f:Agil_E?;%AJl’
Cnm+1:Cnm+(1_5n+1)57cn+1/7n+1a (A17) BJnJrlz(BT_le)/Ejl’
11— ey, cpi-cpi-ci, (a18

Now we are ready to give the new algorithm. In this al-
gorithm, the propagators defined in E415) play the same
role as the time in Eq(A11). One part of the algorithm
consists in maintaining current values of all the propagators
with subscript equal to 1. That is, after collisiopnwe have

1, B7, C1, D}, andE]. At the beginning of the simula-
tion, we have simphyA{=B%=C9=D?=0, andE{=1. As

n _nNh_ni_aAlpn
j+1_D1 Dl Al j+1»
n-1_pn—1;/j

Once these relations are used, E14) can be applied. The
same procedure can be done for parti8lerhen, the collid-

. . . ing components of the Lyapunov vectors can be updated
the simulation advances, we first apply EA16) and then ,qing 4 partial application of EqA13). The application is

Eqg. (A17) for each collision. This is sufficient to maintain artial because only the colliding components must be
the current values of the propagators. In addition, for eac hanged. The changes to the uncolliding components called
particle we store the value of the propagators just after it§Or by Eq.(A13) will be made later, during an application of
last collision. For example, if particle’s last collisionisja,  gq (A14). At the end of the simulation and just before one
we storeA’, B, C}%, D}*, andE'*. Since different values of the periodic orthogonalizations, E¢A14) must be ap-

of A'lA and D'lA must be stored for eachl’, this amounts to  plied to all the components.
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