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Lyapunov spectrum of granular gases
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We calculate and study the Lyapunov spectrum of a granular gas maintained in a steady state by an
isokinetic thermostat. Considering restitution coefficients greater than unity allows us to show that the spectra
change smoothly and continuously at equilibrium. The shearing instability of the granular gas, however,
provokes an abrupt change in the structure of the spectrum. The relationship between various physically
relevant quantities and the energy dissipation rate differs from previously studied nonequilibrium steady states.
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I. INTRODUCTION

The Lyapunov spectra of several nonequilibrium syste
have recently been studied and calculated@1–8#. These non-
equilibrium steady states are generated by traditional n
equilibrium molecular dynamics~NEMD! simulations, and
are constructed by forcing a system while adding a therm
stat to remove the dissipated energy. The most common
ample is a shear imposed onto a fluid, with a Gaussian
Nosé-Hoover thermostat@9# added to remove the energy di
sipated by the viscosity. In these systems, the sum of all
Lyapunov exponents is proportional to the energy dissipa
rate and can thus be linked to the transport coefficients. F
thermore, the spectra of many of these systems often ha
special symmetry that simplifies the calculation of their su
An alternative method of calculating transport coefficie
from Lyapunov spectra has been proposed@10,11#. For a
review, see Ref.@12#.

In this paper, we study the Lyapunov spectrum of gra
lar gases. Granular gases@13–17# are a generalization of a
early model of fluids, the hard-sphere fluid@18#. The
Lyapunov spectrum of the hard-sphere fluid has already b
studied@6,19,20#, giving us a well defined point of compar
son. The hard-sphere fluid is a set of spheres~or disks in two
dimensions! that move freely through space, interacting on
during instantaneous, energy-conserving collisions. In gra
lar gases, we allow collisions to dissipate or generate ene
The change of energy depends on a single parameterr, the
restitution coefficient. Whenr 51, collisions conserve en
ergy, and we recover the hard-sphere fluid. The chang
energy during collisions is compensated by a Gaussian t
mostat, as in the previously studied NEMD systems.

The granular gas thus resembles the NEMD systems,
there are several important differences. The most fundam
tal is that the granular gas has irreversible microscopic
namics. Another important difference is that the granular
does not have a thermodynamic limt. For any fixed value
rÞ1, instabilities appear asN is increased. Furthermore, fo
the granular gas, equilibrium can be approached cont
ously from two directions:r→12 andr→11 . In the NEMD
systems, equilibrium can be approached from only one di
tion, by letting the forcing tend to 0.

We will compare the Lyapunov spectra of granular ga
with those of NEMD systems. For both these systems,
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Lyapunov exponents and their derivatives are continuou
equilibrium, and the sum of the exponents and the dimens
of the attractor are extensive quantities. Unlike NEMD sy
tems, however, the sum of granular gas spectra is not lin
in the energy dissipation rate, but quadratic. The sums
certain pairs of exponents, however, are proportional to
dissipation rate. Whenr is lowered below a certain threshold
the granular gas becomes unstable. This instability has a
matic effect on the Lyapunov spectrum.

A. Lyapunov spectrum

The Lyapunov exponents describe how quickly two ide
tical systems with almost identical initial conditions diverg
in phase space. Consider a system at the pointG(0) in phase
space ofL dimensions. The system follows some trajecto
through phase space, arriving atG(t) at time t. We express
this mathematically by definingSt to be an operator tha
evolves a point in phase space forward a timet,

G~ t !5StG~0!. ~1!

Next, consider a second system at atG1dG, wheredG is
infinitesimally small. After a timet, this system moves to

G~ t !1dG~ t !5St@G~0!1dG~0!#. ~2!

Then the Lyapunov exponentl is defined to be

l5 lim
t→`

1

t
ln

udG~ t !u
udG~0!u

. ~3!

Note thatl has units of inverse time. It is thus the growth~or
decay! rate of the perturbationdG. In generall is a function
of both G anddG. This is unfortunate, because bothG and
dG containL numbers, so thatl is a function on a 2L di-
mensional space. However, the situation can be impro
because thedG are infinitesimal. This means that their ev
lution depends only on the linearized dynamics,

G~ t !1dG~ t !5StG~0!1M•dG, ~4!

where M is simply anL3L matrix. SinceM is a linear
operator, knowingl(G,dG) for a set ofdG that spans the
phase space enables one to calculatel(G,dG) for any dG.
©2001 The American Physical Society06-1
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SEAN McNAMARA AND MICHEL MARESCHAL PHYSICAL REVIEW E 63 061306
By convention, we associatel1 with the fastest growing di-
rectiondG1 ; l2 with the fastest growing directiondG2 that
is also perpendicular todG1 (dG1•dG250), andl i with the
fastest growing directiondGi with dGj•dGi50 for j , i .

Furthermore, for ergodic systems, the Lyapunov spect
$l i% is independent ofG. This enables us to do away wit
the dependence onG, and speak aboutthe Lyapunov spec-
trum of a system. A dynamical system is ergodic if its i
variant distribution cannot be subdivided into smaller inva
ant pieces. This is a more general condition than equilibriu
systems out of equilibrium can also be ergodic. In this pap
we will assume that all the systems considered here are
godic, although this has not been proved. However, we h
not seen anything that would contradict this assumption.

B. Granular materials

By a granular material, we mean substances such as s
powders, grain, or gravel that are composed of many in
vidual macroscopic particles. We consider an idealization
these materials called the inelastic hard sphere model.
model is a generalization of the hard-sphere fluid, an e
model of liquids@18#. In the hard-sphere fluid, particles a
assumed to move freely, without interaction, except dur
instantaneous collisions, when the particle velocities cha
discontinuously. Forces between the particles are never
culated; instead the post collisional velocities are calcula
directly from the precollisional velocities and positions usi
a ‘‘collision rule.’’ The collision rule is derived by assumin
that a collision conserves momentum and energy, and
the force between the particles acts only along a line c
necting the centers of the particles. When modeling gran
materials, we wish to remove energy conservation, beca
collisions between macroscopic particles do not conserve
macroscopic kinetic energy. Thus, we replace the conse
tion of energy by the definition of the restitution coefficie
r. If n̂ is a unit vector pointing along the line of centers, a
the primed ~unprimed! velocities are the post-collisiona
~precollisional! velocities, then

~vW A82vW B8 !•n̂52r ~vW A2vW B!•n̂, ~5!

where the subscriptsA andB denote the colliding particles
Throughout this paper we use boldface letters to indic
vectors in phase space, and mark physical space vectors
an arrow or a hat. Equation~5! says that the relative velocit
along the line of centers is reversed and reduced by a fa
of r. The four assumptions can be combined to give
collision rule,

vW A85vW A1 fW , vW B85vW B2 fW ,
~6!

where fW[
11r

2
@~vW B2vW A!•n̂#n̂.

The change in energy during a collision is

DE52
1

4
~12r 2!@~vW B2vW A!•n̂#2. ~7!
06130
m

-
:
r,
r-

ve

nd,
i-
f
is

ly

g
e

al-
d

at
-

ar
se
he
a-

te
ith

tor
e

If r 51, energy is conserved during collisions, and we ha
the traditional hard-sphere fluid. One usually considers o
r ,1, because collisions always dissipate energy in exp
mental granular flows. We will also consider the caser .1
~collisions generate energy!, which is unphysical, but pro-
vides access to two different equilibrium limits:r→11 and
r→12 .

C. The freely cooling granular gas

In this paper, we consider exclusively the tw
dimensional freely cooling granular gas. To perform th
simple computer experiment,N identical disks of radiusa
are placed in a periodic domain of sizeLx by Ly . The initial
conditions are drawn from the microcanonical ensemble:
total energy is fixed, the disks are uniformly distributed
space and given velocities drawn from the Maxwe
Boltzmann distribution. The system then evolves witho
any input of energy. This experiment was invented by H
@13#, and is now the subject of many papers@14–17#.

At r 51, we recover the hard-sphere fluid in equilibrium
the density remains homogeneous and the velocities obey
Maxwell-Boltzmann distribution. Asr decreases, nothing
dramatic seems to happen: the density remains constant
no large scale motion is visible~although there are subtl
differences with the equilibrium state!. This situation is
called the ‘‘homogeneous cooling state’’ because the gra
lar temperature~the average kinetic energy per particle! re-
mains spatially uniform but decreases monotonically w
time. As r decreases, the temperature decreases more
more rapidly. Finally,r reaches some critical value, where
transition to a shearing state appears: the particles spon
ously form two countermoving streams. This instability o
curs when the randomized kinetic energy of the granu
temperature decays more rapidly than the longest sh
modes. This process has been studied in detail using a
drodynamic approach@17#, and it has a dramatic effect o
the Lyapunov spectrum. Asr decreases further, the dens
clusters form. Whenr .1, the density remains constan
When r becomes much larger than 1, all the kinetic ener
becomes concentrated in a few particles.

But there is a problem: the freely cooling granular m
dium is not in a steady state. The total energy is monoto
cally decreasing~or increasing forr .1). However, a long
time average over a steady state is needed to calculate
Lyapunov exponents. A steady state can be created by m
tiplying the velocities of all the particles by

e5A E0

E01DE
~8!

just after each collision. Here,E0 is the ~constant! total ki-
netic energy andDE, given in Eq. ~7!, is the change in
energy during a collision. The advantage of this method
that multiplying all the velocities by a constant does n
change the sequence of collisions, it only makes them oc
sooner~or later!. This means that it is not necessary to mu
tiply all the velocities at each collision. One simply replac
the usual time variablet with a new time variables,
6-2
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LYAPUNOV SPECTRUM OF GRANULAR GASES PHYSICAL REVIEW E63 061306
s[E g dt, g[AE(t)~ t !

E0
. ~9!

Here,E(t)(t) is the total kinetic energy, measured in terms
the original, unadjusted timet, andE0 is the kinetic energy a
t50. Changing the time variable fromt to s necessitates
transforming the velocities because they are simply der
tives of position with respect to time,

v (s)5v (t)/g. ~10!

Note that a particle in free motion (v (t) constant! will seem
to accelerate or deaccelerate asg changes with time. In terms
of the transformed velocities, the total kinetic energy is co
stant:E(s)5E(t)/g25E0.

D. The Lyapunov spectra of NEMD systems

The thermostat used to keep the granular gas in a ste
state is a discrete time version of the Gaussian or isokin
thermostat, where the total energy is maintained constan
applying a small drag to all the particles. This thermostat
often been used in NEMD studies. For continuous time,
plying this thermostat gives equations of motion with t
form,

Ġ5S ṙ

v̇
D 5F~G!2aS 0

v D . ~11!

Setting a50 gives the unthermostatted system. For
Gaussian thermostat,a is adjusted at every time step to kee
the energy constant. This thermostat samples the micr
nonical ~isokinetic! ensemble. The Nose´-Hoover thermostat
gives equations of motion written in the same form, exc
that a obeysȧ5@(E0 /E)21#/t2 ~wheret is the response
time of the thermostat!. The Nose´-Hoover thermostat allows
the energyE to fluctuate about its meanE0, and samples the
canonical, or isothermal ensemble. The Nose´-Hoover ther-
mostat reduces to the Gaussian thermostat in the limt
→0. For both thermostats,^a& is proportional to the energy
dissipation rate.

The Gaussian thermostat, the Nose´-Hoover thermostat,
and the ‘‘granular Gaussian’’ thermostat presented in
previous section are all very similar. They all maintain
constant energy by rescaling the velocities. The No´-
Hoover thermostat can also be understood as a time resc
@9#, just like the granular Gaussian thermostat in Sec.
However, the time-rescaling formulation of the Nose´-Hoover
thermostat is difficult to implement, so the velocity-rescali
formulation is used more frequently. The velocity-rescali
formulation is also easier to understand. For granular ga
the situation is different. As discussed in the previous s
tion, the time-rescaling formulation is computationally mo
efficient; therefore the time-rescaling formulation is used
the simulations presented in this paper. However, we
discuss the results from the velocity-rescaling perspect
because this makes them easier to understand.

The Lyapunov spectra of several thermostatted syst
have been calculated@1–8#. We will compare the spectra o
06130
f

-

-

dy
ic
by
s
-

e

a-

t

e

ing
.

s,
c-

ll
e,

s

these systems to those of granular gases, emphasizing
points: ~1! the relation between sums of the exponents a
the energy dissipation rate, and~2! the validity of the conju-
gate pairing rule.

The proportionality of the sum of the exponents to t
energy dissipation rate has been used to express the tran
coefficients in terms of Lyapunov spectra. For example,
uniform shear, the energy dissipation rate ishg2 whereg is
the shear rate andh is the dynamic viscosity. One can ther
fore write h;((l)/g2.

The validity of the conjugate pairing rule greatly simp
fies the calculation of(l @2,5#. This rule states that conju
gate pairs of exponents sum to2^a&. The smallest and the
largest exponent form one conjugate pair, the second sm
est and the second largest another pair, etc. In our t
dimensional system with 4N degrees of freedom, the conju
gate pairing rule states,

l i1l4N2 i 1152^a&, for 1< i<4N. ~12!

If the conjugate pairing rule holds,(l can be calculated
from any pair of exponents. In Sec. II B, we show that c
tain conjugate pairs of granular gases obey Eq.~12!, but the
majority do not.

E. Computational details

1. Units

All results in this paper are numerical, and given in no
dimensional units. We use the particle radiusa as the unit of
distance, and the particle massm defines the unit of mass
The unit of time is defined by fixing(v i

25N, wherev i is the
velocity of particlei. ~Thus the total energy isE05N/2.! All
numerical data shown in the figures is given in terms of th
units. For example, the notationLy545 in various figure
captions means that the simulational domain has a heigh
45 particle radii.

2. Algorithm

Since the inelastic hard sphere model is a generaliza
of the hard-sphere fluid, we modify Dellago and Posc
algorithm @6# for calculating the Lyapunov spectrum of
hard-sphere fluid. In the Appendix, we discuss certain sub
ties that arise because we calculate the Lyapunov spec
in terms ofs and nott.

II. STRUCTURE OF THE SPECTRUM

We will first discuss the structure of the Lyapunov spe
trum atr 51 ~equilibrium!, and then show how this structur
changes withr. Much of what we present in Sec. II A ha
already been discussed in Ref.@20#, but this material is
needed for the interpretation of the nonequilibrium spectra
Sec. II B.

A. Equilibrium spectra

At r 51, conjugate pairs of exponents sum to 0:l i
1l4N2 i 1150. Thus, each exponent has a partner tha
6-3
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SEAN McNAMARA AND MICHEL MARESCHAL PHYSICAL REVIEW E 63 061306
exactly its negative, and it is necessary to calculate only
the spectrum. The second half contains no additional in
mation, and is simply the negative of the first.

In Fig. 1, we show half of a typical spectrum of the har
sphere fluid at equilibrium. The parameters of the system
N5360, Lx5Ly545. The spectrum can be divided into tw
parts. For i<681, the exponents fall onto a well define
continuous curve. On the other hand, for 682< i<720, the
exponents appear in small groups at discrete values.

The discrete groups of exponents have been discusse
Posch and Hirschl@20#. They correspond to hydrodynamic
like perturbations, and appear in groups of four and eigh
Fig. 1 because there are fourfold or eightfold degenera
associated with the square domain. If we break the symm
of the simulational domain by settingLxÞLy , the groups of
exponents separate into two parts. When eitherLx or Ly is
small, several groups of exponents disappear, and the
crete part of the spectrum is simplified. Therefore, it is use
to consider a narrow (Lx5Ly/3) system with the same den
sity. This system is shown in Fig. 2.

We now want to investigate the physical processes un
lying the exponents. As discussed in Sec. I A, each expon
l i gives the growth rate of a perturbation in phase sp
dGi . EachdGi has 4N components: 2N give the displace-
ments of each particle in physical space, and the otherN

FIG. 1. The spectrum of aN5360 hard-disk fluid (r 51) in a
square domain (Lx5Ly545). ~a! The first 2N Lyapunov exponents
~the second 2N are just the negative of the exponents shown!. ~b!
The smallest positive exponents~note difference in thex axis!. For
an explanation of the units used in this figure, see Sec. I E 1.
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give their displacements in momentum space. We denote
displacement in physical space of particlej asdrW j

( i ) and its
velocity space displacement asdvW j

( i ). It is helpful to visual-
ize the Lyapunov vectorsdGi by projecting thedrW j or dvW j
onto the positions of the corresponding particles. This
done in Fig. 3, where we show five typical vectors, one fro
the continuous part of the spectrum, and the rest from
discrete part.

The continuous part of the spectrum@represented bydG1
in Fig. 3~a!# corresponds to disorganized and local pertur
tions. Many particles have very small contributions todG1.
As the Lyapunov indexi increases, the modes become le
local: more and more particles have significant amplitud
but the modes remain disorganized. These modes are
very time dependent. If the simulation were to run a
longer or a bit shorter, the set of contributing particles wou
change, and Fig. 3~a! would look completely different. On
the other hand, if the calculations were started with a diff
ent initial dG1 ~but the same initial particle velocities an
positions, i.e. the same initialG) and run for the same lengt
of time, Fig. 3~a! would not change at all.

In the discrete part of the spectrum, the exponents co
spond to collective motions of the particles. This expla
why these exponents appear in small separated group
discrete values. For example,l2365l237 because both expo
nents correspond to transverse, sinusoidal shearing pertu

FIG. 2. The same as Fig. 1, but for aN5120 hard-disk fluid in
a rectangular domain. (r 51, Lx515, Ly545.) The density is the
same as in Fig. 1, butLx is reduced by one third. The stars mark th
exponents featured in Fig. 3.
6-4
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FIG. 3. Lyapunov vectorsdG1 , dG233, dG237, anddG239 of a hard-disk fluid withN5120, r 51, Lx515, andLy545. The circles show

the positions of the particles at the end of the simulation. In panels a, b, d, and e, the arrows showdrW j
( i ), the components ofdGi that describe

the displacement in physical space of particlej. ~The displacements in velocity spacedvW j
( i ) are nearly equivalent.! The lengths of the vectors

are scaled by the maximum length. If the length of a vector is less than 0.16, no vector is shown. In panel c, we shade the part

drW j•vW j.0.
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tions@dG237 is shown in Fig. 3~d!, anddG236 is the same, but
with a phase shift ofp/2]. Higher harmonics of the shea
waves also exist. The pair of exponentsl231 andl230 corre-
sponds to transverse shear waves with a wavelength ofLy/2.
Note also thatl2305l231'2l237. As Ly is increased further
it is possible to see the third harmonic, then the fourth, a
so on.

The exponentsl232 throughl235 corresponds to longitu
dinal waves, where compressive motion is coupled to a h
ing or cooling of the gas.~In Fig. 3, we show position per
turbations drW j not velocity perturbationsdvW j , but for
nonzero vectors, these two quantities are closely correla!
These waves resemble sound waves, but they do not hav
same relation between velocity and position displaceme
In true sound waves, the velocity and position displaceme
are out of phase, but in the longitudinal Lyapunov waves,
two displacements have the same phase. Furthermore,
waves do not propagate at the sound speed, but they do
higher harmonics just as the shear waves.

In general, the Lyapunov exponents in the discrete par
the spectrum obey

l;
n

Ly
1O~1/Ly

2!, n50, 1, . . . , ~13!

wheren is the mode number.~The zero modes can be con
sidered then50 members of this series.! The existence of
longitudinal and transverse modes and the dependenc
their exponents on their wavelengths has already been
cussed@20#. Equation~13! also appears in a mathematic
model of the Lyapunov exponents@21#. In another paper
@22#, we study these hydrodynamic modes in more detail
the following, we refer to the transverse modes as ‘‘soun
modes and the longitudinal modes as ‘‘sound’’ modes,
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their connection~if any! to the actual shear and sound wav
of the hard-sphere fluid is an open question.

B. Nonequilibrium Lyapunov spectra

We now take the rectangular system of Fig. 2 and Fig
and varyr. The results are shown in Fig. 4. We emphas
that the exponents change smoothly and continuously
equilibrium (r 51, the thin vertical line!. If we follow a

FIG. 4. The Lyapunov spectra of the freely cooling granular g
with N5120, Lx515, Ly545, and 0.7<r ,1.3. Equilibrium (r
51) is marked with a thin solid line, and the transition to th
shearing state atr'0.965 is marked with the dashed line. The spe
trum shown in Fig. 2 appears as a single column atr 51; for each
exponent, a dot is placed on the graph. Since all the exponen
Fig. 2 have the same value ofr, they fall in a vertical column. The
spectra for the other values ofr are displayed in the same way. Th
method of graphing allows the eye to easily follow the evolution
l with r. These spectra were computed by averaging over 2
collisions per particle.
6-5
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SEAN McNAMARA AND MICHEL MARESCHAL PHYSICAL REVIEW E 63 061306
single exponent as a function ofr, nothing distinguishes the
equilibrium state. On the other hand, the shearing instab
~vertical dashed line! provokes abrupt changes in all the e
ponents. On the level of the microscopic dynamics,
shearing transition is more significant than equilibrium.

To discuss the variation of the discrete part of the sp
trum with r, we present a subset of the data in Fig. 5, ide
tifying the different families of exponents on the graph. Co
sulting this figure, we can see how the exponent associ
with each type of hydrodynamic disturbance changes witr.
The two series of points labeled ‘‘2nd shear’’ are the seco
harmonic of the shear mode. Forr .0.965, both the negative
and positive branches decrease asr increases. The first har
monic of the shear mode ‘‘1st shear’’ has the same behav
At the shearing instability (r 50.965), the negative branch o
the first shearing mode bifurcates. The degeneracy betw
the two shear modes is broken by the presence of shear i
system. One of the modes corresponds to a shear pertu
tion that is in phase with the shear in the velocities, the ot
is out of phase. The sound waves ‘‘1st sound’’ have a d
ferent behavior: the positive branch increases withr while
the negative branch decreases.

The series of points labeled ‘‘0 modes’’ are the thr
modes that remain zero for all values ofr. Two of these
modes correspond to a uniform displacement of all the p
ticles in physical space@as shown in Fig. 3~e!#. The third
corresponds to the vector that points along the trajector
phase space: the physical space displacements indG are par-
allel to the velocities inG.

The momentum modes are modes where all the parti
are displaced uniformly in velocity space. These modes
zero at equilibrium, but become nonzero due to the eff
described in Eq.~10!: if the center of mass has a small initi
velocity, the thermostat will amplify or diminish this move
ment as it adds or removes energy. The energy mode co

FIG. 5. A subset of the data of Fig. 4, with the different discre
exponents labeled. ‘‘2nd shear’’ is the second harmonic of the s
mode, ‘‘1st sound’’ is the first harmonic of the sound mod
@Fig. 3~b,c!#, and ‘‘1st shear’’ is the first harmonic of the she
mode @Fig. 3~d!#. These three families have both a positive and
negative branch. ‘‘0 modes’’ are the three modes that remain
for all values ofr ~see text!. The ‘‘momentum modes’’ are mode
where the momentum of each particle is increased by constant.
‘‘energy mode’’ is where the energy of each particle is augmen
by a constant.
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sponds to a phase space displacement that augments th
ergy of each particle. This perturbation grows at twice t
rate of the momentum modes.

Another way to examine the dependence of the Lyapu
spectrum onr is to calculate conjugate pairs. In Fig. 6, w
show the sums of several pairs, as well as the energy d
pation rate per particle. If the granular gas behaved a
thermostatted NEMD system, all the conjugate pairs wo
fall on the heavy line. It is interesting to note that the m
mentum and shearing modes do indeed behave in this w
Other pairs, however, do not. For example, the conjug
pair (1,480) has a slope of the opposite sign, and other p
are nearly independent ofr.

Another fact that emerges from Fig. 6 is that the con
gate sum of the shearing modes is independent of their w
length. This is also true of the sound modes; if their seco
harmonic were present, its conjugate sums would fall on
of the points labeled ‘‘1st sound’’ in Fig. 6~b!.

In Fig. 7, we show the Lyapunov spectrum of the squ
system with the same parameters as Fig. 1 (N5360, Lx
5Ly545). For r .0.965, the evolution of the spectra a
similar to the narrow rectangular case. The shearing
sound modes have the same dependence onr. Near the sec-
ond harmonic of the shearing mode, many new modes
pear that were not present in the narrow rectangular sys

ar
,

ro

he
d

FIG. 6. Conjugate pairs of selected exponents, compared to
energy dissipation rate per particle,Pdiss/N. The exponents labeled
in Fig. 5 are given the same names here. Four additional p
of exponents (1,480), (5,476), (50,431), and (200,283) are sh
in ~b!.
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One can easily see if they are shearing or compressive
examining their dependence onr. On the other hand, whe
r ,0.965, there is a difference between the square and
angular cases. In the rectangular case, the hydrodyna
modes maintain their identity forr ,0.965. In the square
case, the hydrodynamic modes become smeared togethe
r ,0.965. This probably occurs because shearing motion
rupts any hydrodynamic mode whose wave vector is not p
allel to the velocity gradient. In the rectangular case, all wa
vectors must point in they direction, along the velocity gra
dient. In the square case, they can point in thex or y direc-
tion, or a combination of the two.

III. GLOBAL SUMS OF THE EXPONENTS

In addition to the structure of the spectrum, there are c
tain sums of the exponents that have physical significan
We will present these sums as functions ofr, for both the
narrow and square systems shown above. In all cases, it
be seen that the sums vary continuously atr 51, and the
most abrupt change in behavior always occurs at the ons
the shearing instability, not at equilibrium.

First of all, the sum of all the exponents give the rate
phase space contraction. In Fig. 8, we show the depend
of the sum of the whole spectrum onr. As expected, the sum
is 0 atr 51 and negative elsewhere. The sum approache
maximum smoothly and continuously,~although the second
derivative may change abruptly atr 51).

The vanishing derivative of(l with respect tor at
r 51 implies that there are relations between the differ
conjugate pairs of exponents. The sum of all the pairs m
be (l, so if certain pairs of exponents have a nonzero sl
at r 51, as the shear modes do, there must exist other p
whose slope has the opposite sign. In Fig. 6, we see tha
pair (1,480) has a slope approximately one-half as large
of opposite to the shear modes. Thus, it cancels about
half of the shear modes. Since there are six shear mo
present, plus the energy mode~which has a slope twice a
large as the shear modes!, there must be at least 16 pai
whose slopes are similar to (1,480). In fact, there are m
because the pairs at the lower edge of the continuous pa
the spectrum@represented by (200,283) in Fig. 6# have very
small slopes that have the same sign as the shear mode

FIG. 7. Same as Fig. 4, except for a square system with th
times as many particles (N5360, Lx5Ly545).
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The behavior of(l differs from the NEMD systems, be
cause(l is quadratic in the energy dissipation ratePdiss.
Figure 6 showsPdiss, and it is linear inr. In Fig. 8, (l is
quadratic inr and therefore also inPdiss.

The Kolmogorov-Sinai entropyhKS gives the rate at
which a forecast made from finite precision data loses ac
racy. For closed systems, like the one considered in this
per, it is equal to the sum of all the positive Lyapunov e
ponents. In Ref.@6#, this quantity has been calculated as
function of density and shown to be closely related to
collision frequency. In Fig. 9, we show the Kolmogoro
Sinai entropy per particle as a function ofr and as a function
of collision frequency. As a function ofr, hKS is continuous
at equilibrium, and seems to have a maximum at a valuer
slightly larger than 1. The biggest change in behavior occ
at the shearing instability, wherehKS falls rapidly. Figure
9~b! reveals thathKS is roughly proportional to the collision
ratedC/ds, so that the rapid fall ofhKS at the onset of the
shearing instability is due to the reduction of the collisi
rate.

Finally, the spectrum can be used to calculate the dim
sion of the attractor using the Kaplan-Yorke conjectu
@1,4,23#. One starts adding the exponents together, star
with the l1. The sum increases until one reaches the 0
ponents. Then one starts adding the negative exponents
the sum decreases. When the sum vanishes, one stops
counts the number of exponents in the sum. This isDL , the
‘‘Lyapunov’’ dimension of the attractor. Usually only a frac
tion of the last exponent is needed to make the sum van
so that the number of exponents in the sum is not necess
an integer. This method has been shown to be exact up to
dimensions, and to give an upper bound in higher dim
sions. For equilibrium systems, this procedure gives 4N, the
dimension of the phase space. Like(l in Fig. 8, DL has a
quadratic dependence onr for r .0.965, and thus a quadrati
dependence onPdiss. This is different from the NEMD sys-
tems, whereDL has a linear dependence onPdiss @4#. But like
the NEMD systems,DL is an extensive quantity, i.e., it i
proportional toN. This can be seen from the nearly perfe
superposition of the two lines in Fig. 10.

e FIG. 8. The sum of the whole spectrum, divided byN. The
heavy solid line is the narrow (N5120) system and the heav
dashed line is the square (N5360) system. The vertical solid line
indicates equilibrium (r 51) and the vertical dashed line the ons
of the shearing instability.
6-7
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For r ,0.965, DL decreases approximately linearly wi
r. It may be tempting to compare this with a NEMD syste
but Pdiss is not linear inr for r ,0.965, soDL is not linear in
Pdiss.

IV. CONSTRUCTION OF UNSTABLE TRAJECTORIES

The phase space dynamics of nonequilibrium ste
states are governed by two fractal objects: the attractor

FIG. 9. The Kolomogorov-Sinai entropy divided byN. The solid
line is the narrow (N5120) system and the dashed line is t
square (N5360) system.~a! as a function ofr, ~b! as a function of
collision ratedC/ds.

FIG. 10. The Lyapunov dimension of the attractorDL , divided
by N. The solid line is the narrow (N5120) system and the dashe
line is the square (N5360) system.
06130
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the repeller@7,24#. The attractor is the object whose dime
sion is shown in Fig. 10, and is the set of stable trajector
A trajectory starting from almost any point in phase spa
rapidly approaches, or is ‘‘attracted’’ to, the attractor. T
repellor is the set of unstable trajectories. These unsta
trajectories cannot be observed directly in simulations,
cause any small deviation from the repellor grows expon
tially. In this way, a system placed at almost any point
phase space is attracted by the attractor and repelled by
repellor.

In reversible systems, the repellor trajectories can be c
structed by taking a simulated trajectory, and following
backwards in time. We can express this in mathemat
symbols. LetG0 be the starting point of the simulated~at-
tractor! trajectory andG1 its end. Then we have

G15StG0 , V2G05StV2G1 , ~14!

whereV2 is an operator that reverses all the velocities. T
first equation expresses the attractor trajectory (G0→G1) and
the second the repellor trajectory (V2G1→V2G0). The op-
eratorSt is the same in both cases because the microsc
dynamics is reversible. Since Eq.~14! applies for any timet,
the repellor is just mirror image of the attractor. We c
obtain it simply by applyingV2 to the attractor@7#.

But this is not true for granular gases, because the mic
scopic dynamics is not reversible. But there is still a way
generate the repellor trajectories. Note that the collision r
Eq. ~6!, can be rewritten as

vW A5vW A81 fW8, vW B5vW B82 fW8,
~15!

fW8[
111/r

2
@~vW B82vW A8 !•n̂#n̂.

This equation has the form of the collision rule, except t
restitution coefficient is now 1/r and the pre- and post
collisional velocities have exchanged roles. A collision
restitution coefficientr is the inverse of a collision at 1/r .
Therefore, Eq.~14! must be modified to

G15S t
(r )G0 , V2G05S t

(1/r )V2G1 , ~16!

where the superscript onSt indicates the restitution coeffi
cient. We have used this procedure to generate repellor
jectories, and computed their Lyapunov spectrum. We fin
spectrum that is exactly the negative of the first. This is w
is expected, because if we consider a trajectory infinit
close to the first trajectory:G01dG0→G11dG1 that gener-
ates a Lyapunov exponentl, we know that its image:
V2(G11dG1)→V2G01dG0 exists, and will generate the
Lyapunov exponent2l.

We emphasize that for granular gases, the repellor can
be obtained by simply applyingV2 to the attractor. The re-
pellor is not the mirror image of the attractor, but the mirr
image of the attractor withr→1/r .
6-8
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V. CONCLUSIONS

We have calculated the Lyapunov spectrum of granu
gases and explored some of its properties. In general, we
that equilibrium is distinguished only by the symmetry of t
spectrum. There are no discontinuities in the spectrum
equilibrium. On the other hand, the onset of the shear
instability causes big changes in the spectrum. The onse
the shearing instability is associated with a rapid decreas
sum of the spectrum, the Kolmogorov-Sinai entropy, and
dimension of the attractor. Furthermore, the shearing in
bility disrupts the hydrodynamic structure of spectrum.

We compared the granular gas to the NEMD thermos
ted systems whose Lyapunov spectra have been studie
several years. There are important differences between
relation of the energy dissipation rate and the sum of
Lyapunov exponents(l. In granular gases, the sum of th
Lyapunov exponents is quadratic in the energy dissipa
rate, not linear as in the NEMD systems. This may be du
the existence of two different equilibrium limits:r→11 and
r→12 . Equilibrium (r 51) must be a maximum of(l
since (l,0 for nonequilibrium systems. This means th
the derivative of(l with respect tor must either vanish a
r 51 or be discontinuous. But this second possibility is e
cluded because all the exponents are continuous inr.

We also showed how to construct the repellor. One can
construct it by simply reversing the velocities of the attrac
trajectories, for the microscopic dynamics is irreversible.
stead, one must reverse the velocities after changing the
titution coefficient to its reciprocal.

In conclusion, there are many points of contact betwe
granular gases and the previously studied nonequilibr
systems. Yet, granular gases are not so similar as to
equivalent to modifying a few parameters of an existi
case. It is therefore fruitful to compare granular gases w
these other systems, as we have done in this paper. We
this work will deepen the scientific community’s understan
ing of chaos in nonequilibrium systems and suggest n
directions of inquiry.
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APPENDIX: AN ALGORITHM FOR CALCULATING
THE LYAPUNOV SPECTRUM OF A GRANULAR GAS

In this Appendix, we give the modifications that must
made to Dellago and Posch’s@6# algorithm for calculating
the Lyapunov spectrum of the hard-sphere fluid. We fi
present their results, and then our generalization.

One first calculates a trajectoryG(t) of the system in
phase space. The hard-sphere fluid has two types of mo
Between collisions, the system evolves continuously,

Ġ5F~G!, ~A1!
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except at times$t1 ,t2 , . . . %, when the system moves in
stantaneously from one phase space point to another,

G85M~G!. ~A2!

Along with G(t) one evolves a set of 4N infinitesimal
Lyapunov vectors$dG% such thatG(t)1dG(t) is a trajectory
in phase space distinct from, but infinitely close toG(t). The
Lyapunov spectrum is calculated from the growth rate
these vectors. This set of 4N vectors must be periodically
renormalized, as described in@25#.

During the continuous part of the motion, the Lyapun
vectorsdG evolve according to

dĠ5
]F

]G
•dG, ~A3!

and when the system jumps from one point to another, D
lago and Posch showed that the Lyapunov vectors transf
according to

dG85
]M

]G
•dG1F]M

]G
•F~G!2F~M~G!!Gdtc . ~A4!

The second term on the right hand side arises because
mapM is not applied at the same time in the two trajectori
The particles are at slightly different positions so their co
sions will occur at slightly different times. The quantitydtc
is the difference in collision times.

It now becomes more convenient to use the notation

G5S r

v D , dG5S dr

dv D , r5S rW1

rW2

A

rWN

D , ~A5!

wherer andv are the position and velocity coordinates.~Re-
call that boldface vectors are phase space vectors w
physical space vectors are indicated by an arrow.! Between
collisions, we have free motion, so

Ġ5S ṙ

v̇
D 5S v

0D . ~A6!

The Lyapunov vectors obey

ḋG5S ḋr

ḋv
D 5S dv

0 D . ~A7!

For hard spheres, the map applied at each collision is

G85S r8

v8
D 5S r

v1 fWC
D . ~A8!

We have used slightly different notation than Dellago a
Posch. The momentum transferred from one particle to
other during the collision isfW :
6-9
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fW5@~vW B2vW A!•n̂#n̂, ~A9!

which is the same as Eq.~6! with r 51. As before,A andB

label the two colliding particles, andn̂ is a normal vector
pointing from the center ofB to the center ofA. C is a vector
that has 1 in the position of particleA, 21 in the position of
particle B and 0 elsewhere. ThusvW 85vW 1 fWC meansvW A8

5vW A1 fW , vW B85vW B2 fW , andvW i85vW i for iÞA,B.
Equation~A4! becomes

dG85S dr8

dv8
D 5S dr2 fWdtcC

dv1d fWC
D , ~A10!

whered fW5(] fW /]G)•dG. This transformation involves only
the components ofdG corresponding to the two colliding
particles. This enables us to integrate Eqs.~A7! and ~A10!
rapidly. The algorithm proceeds as follows: for each partic
we store the time of its last collision~or t0, the time of the
beginning of the simulation, if that particle has suffered
collisions!. Suppose we are just about to treat collisionn
involving particlesA andB. Before applying Eq.~A10!, we
must take into account the free motion leading up to collis
n. Let j A denote the index ofA’s last collision ~where j A
50 if this is A’s first collision!. For each Lyapunov vecto
dG we modify the components associated with particleA
using

drWn5drW j
A8
1dvW j

A8
~t j A

2tn!. ~A11!

Here,drWn is the phase space deviation just before collision

while drW j A
8 is the deviation just after collisionj A . Equation

~A11! gives the change in these components of the Lyapu
vectors that has occurred during the free motion since c
sion j A . After doing the same thing for particleB, we apply
Eq. ~A10!. Finally, we set j A5 j B5n and go to collision
n11.

We now turn to the thermostatted (rÞ1) case. The algo-
rithm must be modified, but it remains essentially the sa
As we will see, instead of storing the time of each particl
last collision, we must store 8N13 quantities per particle
These additional quantities, however, play the same role
t j A

in Eq. ~A11!.
When the thermostat is applied, the map applied at co

sions becomes

S r8

v8
D 5S r

e~v1 fWC!
D , ~A12!

wheree, given in Eq.~8! is the factor needed to maintai
constant energy. The momentum transfer is now given
Eq. ~6!, not Eq.~A9!. Note thate multiplies all components
of v, not only those involved in the collision. Eq.~A4! be-
comes

S dr8

dv8
D 5S dr1@~12e!v2e fWC#dtc

edv1ed fWC1de~v1 fWC!
D , ~A13!
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where de5(]e/]G)•dG. Equation ~A13! can be imple-
mented directly, but the resulting program is very slow b
cause all components of the displacement vectors mus
modified at each collision. Furthermore, Eq.~A11! cannot be
used becausedv changes at each collision. We therefo
seek an alternative that allows us to advance the coordin
associated with freely moving particles over many collisio
at a time. We first search for a generalization of Eq.~A11!
that gives the evolution of the noncolliding components
the Lyapunov vectors. Suppose that a particle undergoes
motion betweent j and tn , i.e., it is not involved in any
collision i with j . i .n. Let drW j8 anddvW j8 be the phase spac

deviations just after collisionj, and drWn and dvW n are the
deviations just before the collisionn. The effect of repeated
applications of Eq.~A13! for collisions i with j . i .n give

S drWn

dvW n
D 5S drW j81Bj 11

n dvW j81~Cj 11
n211D j 11

n !vW *

Ej 11
n21dvW j81Aj 11

n21vW *
D .

~A14!

Here,vW * is the particle velocity witht as the time variable. It
is constant between collisions. But the real content of
~A14! lies in the following definitions:

Em
n 5 )

i 5m

n

e i ,

Am
n 5 (

i 5m

n

Ei 11
n de i /g i ,

Bm
n 5 (

i 5m

n

Em
i 21g i 21~t i2t i 21!, ~A15!

Cm
n 5 (

i 5m

n

~12e i !dtci /g i ,

Dm
n 5 (

i 5m

n

Am
i 21g i 21~t i2t i 21!.

In these definitions,g i is the value ofg just before collision
i, e i is the value ofe for collision i, dtci is the value ofdtc

for collision i, etc. If m.n, we takeEm
n 51 and the sums

equal to 0. We call these quantities ‘‘propagators’’ becau
the propagate the Lyapunov vectors forward in time throu
the collisions given by the super- and sub-script: the nota
Em

n is meant to suggest that this quantity propagatesdG from
collision m to collision n. Not all the superscripts in Eq
~A14! are the same becauseA, C, and E are incremented
during the collision whileB and D are incremented during
the free motion leading up to the collision. ThusA, C, andE
have a superscript ofn21 because collisionn has not yet
occurred. ButB and D have a superscript ofn because the
free motion leading up to collisionn has occurred. Note tha
Am

n andDm
n depend ondG ~via de).
6-10
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As one advances in time, it is easy to update these qu
tities. Suppose the collisionn has just occurred. Then th
free motion between collisionn andn11 can be taken into
account using

Bm
n115Bm

n 1Em
n gn~tn112tn!,

~A16!
Dm

n115Dm
n 1Am

n gn~tn112tn!.

At collision n11, we update the other three quantities,

Am
n115en11Am

n 1den11 ,

Cm
n115Cm

n 1~12en11!dtcn11 /gn11 , ~A17!

Em
n115en11Em

n .

Now we are ready to give the new algorithm. In this a
gorithm, the propagators defined in Eq.~A15! play the same
role as the time in Eq.~A11!. One part of the algorithm
consists in maintaining current values of all the propaga
with subscript equal to 1. That is, after collisionn, we have
A1

n , B1
n , C1

n , D1
n , andE1

n . At the beginning of the simula
tion, we have simplyA1

05B1
05C1

05D1
050, andE1

051. As
the simulation advances, we first apply Eq.~A16! and then
Eq. ~A17! for each collision. This is sufficient to maintai
the current values of the propagators. In addition, for e
particle we store the value of the propagators just after
last collision. For example, if particleA’s last collision isj A ,
we storeA1

j A, B1
j A, C1

j A, D1
j A, andE1

j A. Since different values

of A1
j A andD1

j A must be stored for eachdG, this amounts to
m
-

d

ys
E

06130
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8N13 numbers per particle. This requires a lot of memo
(8N2 numbers, but recall$dG% contains 16N2 numbers!, but
adds very little computation time. Each particle ‘‘remem
bers’’ the values of the propagators just after its last co
sion. Imagine that we want to treat collisionn using Eq.
~A14!. We do not have necessary propagators. For exam
we needAj A11

n21 , but we have onlyA1
j A and A1

n21. But the

needed propagators can all be calculated from the avail
ones using

Aj 11
n215A1

n212Ej 11
n21A1

j ,

Bj 11
n 5~B1

n2B1
j !/E1

j ,

Cj 11
n215C1

n212C1
j , ~A18!

D j 11
n 5D1

n2D1
j 2A1

j Bj 11
n ,

Ej 11
n215E1

n21/E1
j .

Once these relations are used, Eq.~A14! can be applied. The
same procedure can be done for particleB. Then, the collid-
ing components of the Lyapunov vectors can be upda
using a partial application of Eq.~A13!. The application is
partial because only the colliding components must
changed. The changes to the uncolliding components ca
for by Eq.~A13! will be made later, during an application o
Eq. ~A14!. At the end of the simulation and just before on
of the periodic orthogonalizations, Eq.~A14! must be ap-
plied to all the components.
f
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